PREPARING FOR THE HEALTH IMPACTS OF CLIMATE CHANGE

Roger Racine, MS

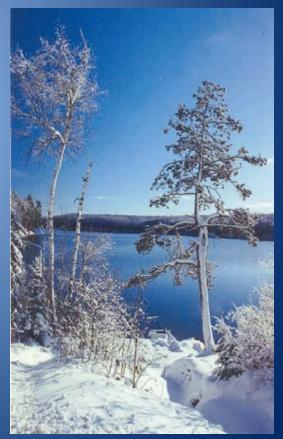
Division of Communicable Diseases

MDHHS

Beaver Island August 31, 2016

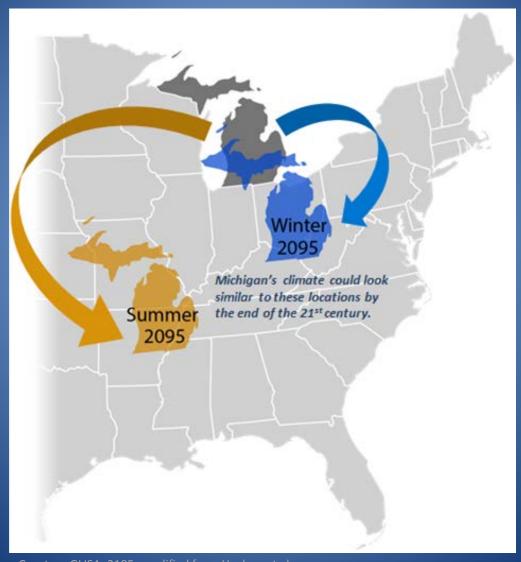
Michigan Climate & Health Adaptation Program MICHAP

- Federal/State /Local Partnership
- Integrating Climate Adaptation into Public Health Practice
- Promote Adaptation Strategies to Protect Public Health



Outline

- Climate Change in Michigan
- How Climate Change Affects Health
- Climate Change Vulnerability in Your Community
- Public Health Response: Mitigation & Adaptation


Great Lakes Climate is Changing

- Temperatures are rising, especially in winter.
 Winters have become milder and shorter.
- Warming winter temperatures increase ice and freezing rain
- Spring is arriving earlier.
- Frequency, intensity of severe storms are increasing.

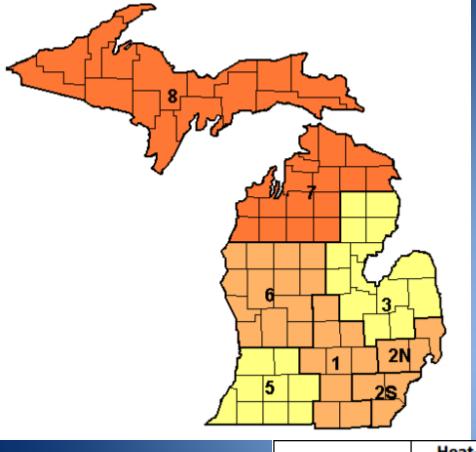
Source; Edge of the Wilderness Scenic Byways

Climate Change in Context

Courtesy GLISA, 2105, modified from Hayhoe et al.

How Climate Change Affects Health

Climate Change is Bad for People


(adapted from Frumkin et al 2008, Luber et al 2014)

- Extreme Weather Events
- Heat waves, storms, floods, droughts, wild fires
- health impacts:
- Injuries, heat-related illnesses, death
- Worsening of chronic heart & lung conditions
- Anxiety, depression, mental stress
- Social disruption, housing displacement
- Environmental Disruption
- Degraded water & air quality
- Habitat changes
- health impacts:
- Vector-borne diseases
- Water- and food-borne diseases
- Asthma and allergic conditions

Priority Climate-Related Health Impacts

Key Health Outcome	Biophysical Parameter Changes	Predicted Change
Heat Morbidity, Mortality	More frequent, longer Heat Events; Warmer minimum temperatures	
Respiratory Diseases	Air Pollutants increase with high temps; Pollen, Mold levels increase with longer growing season & more moisture	
Injury, CO Poisoning	More frequent Ice Storms, Extreme Rain leading to more Power Outages & Cleanup; changes in other storm types unclear	?
Waterborne Diseases, Toxins	Algal blooms, other Flood-related contaminations more frequent	
Vector borne Diseases	Impact on Mosquito &Tick lifecycle unclear	?

Extreme Heat Events Impacts on Health

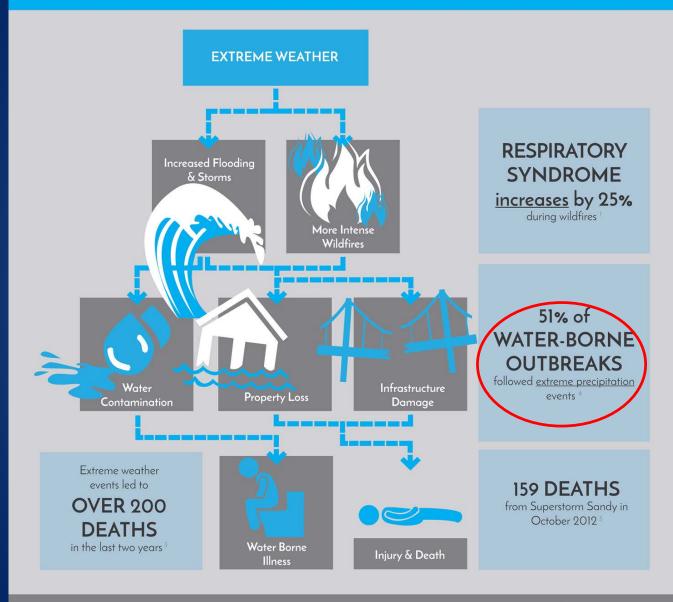
Summary of Heat-Related ED Visits by Region (April 1 – August 31, 2013)

	Region	Related ED Visits	All ED Visit	Proportion of Heat- Related ED Visits	Related ED Visits Across Regions
	1	524	248,482	0.211%	11.54%
	2N	832	319,918	0.260%	18.32%
	2S	1124	503,790	0.047%	24.75%
)	3	438	221,386	0.198%	9.65%
	5	384	205,490	0.187%	8.46%
	6	847	299,551	0.283%	18.65%
	7	271	84,011	0.323%	5.97%
	8	121	39,798	0.304%	2.66%
	Michigan Total	4541	1,922,426	0.236%	100.0%

Severe Storms: Floods, Snow/Ice

Downtown Grand Rapids, April 2013

Health Impacts


- Physical Injuries (drowning, accidents)
- Allergies (mold)
- Food and Water-borne
 Illnesses
- Displacement
- Mental Health Issues
- Interruption of Emergency Services
- Carbon Monoxide poisoning

Severe Storms 1996-2016 in Charlevoix & Emmet Counties & St. James Twp.

	Number of Storms by County		
Storm Type	Charlevoix (St. James)	Emmet	
Winter Storm (ice, snow, cold)	129	112	
Thunderstorm w/ Excess Wind	26 (2)	25	
Hail	27 (1)	15	
Excess Rain, Flooding	1	1	
High/Strong Winds	10	13	
Tornado	1	2	
Other	4	5	
Total	198 (3)	173	
Average # storms/yr.	9.4 (0.14)	8.2	

Data from the NOAA Storm Events Database: www.ncdc.noaa.gov/stormevents/

HOW CLIMATE CHANGE AFFECTS YOUR HEALTH

Potential Sources of Waterborne Disease Exposure

Local Risk Factors for Waterborne Disease Exposure

Exposure Source	Estimated no. housing units (2015) ^b	Charlevoix percent (1990) ^a	Michigan percent (1990) ^a
Private well	9,743	56.0	57.6
Septic system	10,909	62.7	57.3
Septic failures 2013 ^c	139		
'Too Old' Septic systems ^d		33.0	
Watersheds w. human fed	100.0		

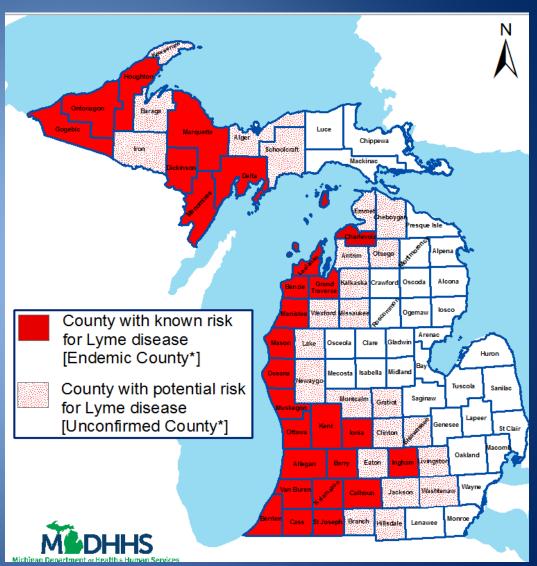
- a. Percent calculated using data from the 1990 Census of Housing;
- b. Number calculated using (a) times number of 1995 Charlevoix housing units from Census Quick Facts;
- c. Number reported in 2012 Community Health Assessment, NW Michigan Health Dept.;
- d. From **2016 Septic Question Project Report**, NW Michigan Health Dept. and Tip of the Mitt Watershed Council.
- e. **PNAS** Aug 18, 2015 vol. 112 (33):10419-10424.

Climate Change → Disrupted Ecosystems

Disruptions → New Opportunities for Diseases To Thrive

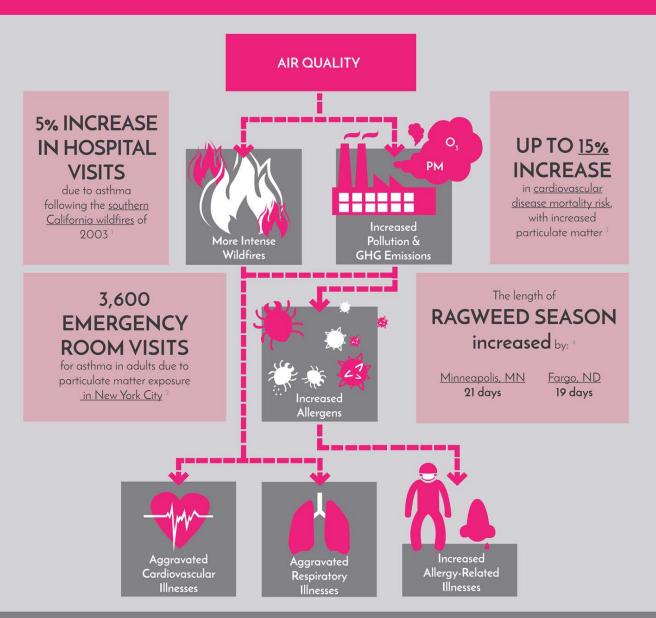
Ticks and Lyme Disease

- Lyme Disease first seen in Michigan in 1999
- Human disease incidence increasing
- Tick development, behavior affected by:
 - -local temperature
 - -precipitation
 - -soil type
 - -drainage
 - –host species
 - —land use/ vegetation


Ixodes scapularis, black legged tick

- Disease risk also related to:
 - –outdoor activities
 - -landscaping

Ticks and Lyme Disease

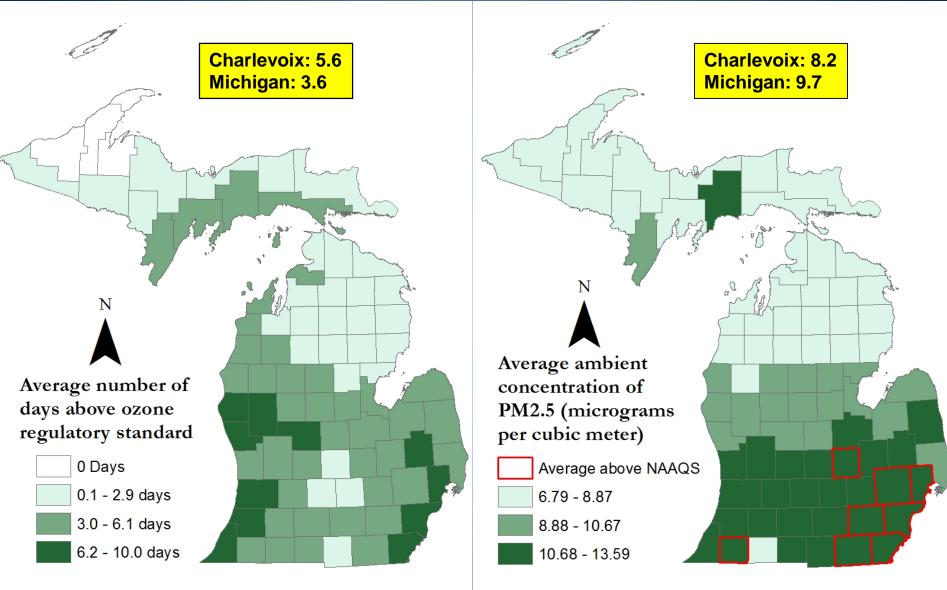

- W & SW Lower Michigan has increasing & expanding populations of blacklegged ticks, the Lyme disease vector
- Charlevoix County is

 'Endemic' Lyme-infected
 ticks have been found
 there

Blacklegged tick and Lyme disease endemic range, 2016.

HOW CLIMATE CHANGE AFFECTS YOUR HEALTH

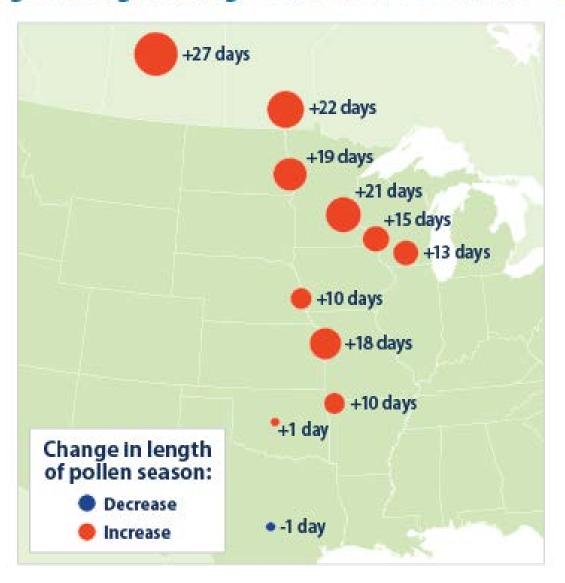
Climate Change Affects Air Pollutants



I. http://www.ncbi.nlm.nih.gov/pubmed/19017694

^{2.} http://www.nyc.gov/html/doh/downloads/pdf/eode/eode-air-quality-impact.pdf

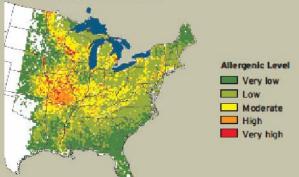
^{4.} https://www.whitehouse.gov/sites/default/files/docs/the_health_impacts_of_climate_change_on_americans_final.pdf


Distribution of Poor Air Quality by County

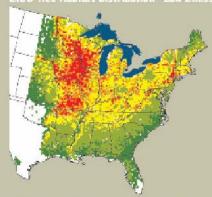
Source: Environmental Health Tracking Network (2005-2011)
*Includes both counties with monitors and counties which values were mathematically modelled
*Ozone regulatory standard changed from 80 ppb to 75 ppb in 2008

Source: Environmental Health Tracking Network (2005-2011)
*Includes both counties with monitors and counties which values were mathematically modelled
National Ambient Air Quality Standard = 12 micrograms PM2.5 per cubic meter

Change in Length of Ragweed Pollen Season, 1995-2013

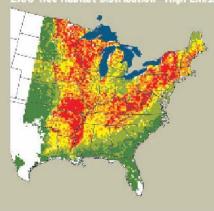

Data source: Ziska et al., 2014

Example: Increased amounts of Tree Pollen in the air


Extreme Allergies and **Global Warming NWF 2010**

ANNUAL ALLERGENIC TREE POLLEN POTENTIAL

2100 Tree Habitat Distribution—Low Emissions Scenario



Allergen Hotspots States with a risk of

large increases in allergenic tree polien:

States with a risk of moderate increases in allergenic tree pollen: Minnesota Wisconsin

2100 Tree Habitat Distribution—High Emissions Scenario

Allergen Hotspots

States with a risk of large increases in all ergenic tree pollen: **Arkansas** Maine Minnesota New Hampshire New York Pennsylvania Jerminnt: West Virginia

States with a risk of all ergenic tree pollen: Kentucky Mississippi Termostro e

Wisconsin

Choices we make now about global warming pollution can make a big difference in the future potential for allergenic tree pollen. These maps show the annual allergenic potential from tree pollen for the current distribution of tree species habitat and for projected distributions of tree species habitat under two future climate scenarios-one in which greenhouse gas emissions are higher and one with lower emissions. Following the lower emissions pathway will help curb the possibility of expanding the range of trees, like oaks and hickories, that are known to produce highly allergenic pollen.

How the Maps Were Made

The potential tree habitat distributions for 134 species are from the USDA Forest Service's Climate Change Tree At las, available at http://www.nrs.fs.fed.us/atlas/tree. Future distributions based on the average of three global climate models, each run for two emissions scenarios (low carbon dioxide increases to 550) ppm by 2100; high: carbon dioxide increases to 970 ppm by 2100). The Tree Atlas calculates Importance Values (IV) for each species for each 20 km by 20 km gridbox in the Eastern half of the United States. We scaled these Importance Values by how allergenic the pollen from each species is, as Indicated in the Researchers Allergy and Botany Library available at http://www.pollenlibrary.com (highly allergenic= IV*3, moderately allergenic = IV*2, low allergenic = IV*1, not allergenic = IV*0). Then, we summed the contributions from all 134 species. to calculate the total annual allergenic potential for each grid box. Note that the actual future distribution of trees and annual altergenic potential will also depend on many factors that this model does not consider, such as fragmentation of landscapes and competition with other species.

Climate Change Vulnerability

Who is affected by Climate Change?

Everyone is impacted; however, some more likely to be harmed than others.

Vulnerable People are:

- Elderly, or very young children
- Persons with pre-existing conditions
- Persons taking certain medications
- Socially isolated, homeless
- Low income
- Outdoor workers

Vulnerable People (Charlevoix)

	Charlevoix		Michigan
<u>Health Risk Factor</u>	<u>Number</u>	<u>Percent</u>	<u>Percent</u>
Age under 5 yrs	1,233	4.7	5.8
Age 65 + yrs	5,799	22.1	15.8
Non-white	1,181	4.5	20.3
In poverty	3,306	12.6	16.2
Adult smokers*		17	21
Adult excessive drinking*		28	31
Adult Obesity*		19	20

Data from Census Quick Facts 2015 estimates, and

^{* 2015} Community Health Assessment, NW Michigan Health Dept. www.nwmich.org

Vulnerable People (Charlevoix)

Chronic Health Conditions in Charlevoix County

I. Self-Reported Conditions from the Behavioral Risk Factor Survey

	Charlevoix County		<u>Michigan</u>	
	rate %	<u>95% CI</u>	rate %	<u>95% CI</u>
Disability	23.6	19.9-28.6	23.7	23.0-24.3
Asthma(Still)	12.1	8.7-16.4	10.1	9.6-10.6
Asthma(Ever)	16.3	12.1-21.5	15.6	15.0-16.2
Diabetes	6.9	4.9-9.7	9.5	9.1-9.9
Heart Attack	6.7	4.5-9.7	4.6	4.3-4.9
Angina or Coronary Heart				
Disease	6.6	4.3-9.8	4.8	4.5-5.1
Stroke	3.8	2.2-6.3	2.8	2.6-3.0
Any Cardiovascular Disease	12.6	9.5-16.7	8.9	8.6-9.3
Obesity	27.3	22.2-33.0	30.9	30.1-31.6
Arthritis	35.5	28.3-43.6	31.5	30.5-32.5

Vulnerable Places

Higher risk of Exposure

Geographic

Urban/Rural/Farm Topography/Flood Plain

Storm Frequency/Projections

Infrastructural

Septic Systems Combined Sewers

Housing Private Wells

Green space/Trees Heavy traffic exhaust

How Do We Respond to Protect Human Health?

Public Health Strategies

Mitigation: Reduce, Prevent Carbon Emissions

- Reduce energy consumption
- Use fossil fuel alternatives
- Reduce fossil fuel combustion
- Control emissions

Adaptation: Actions that Moderate Harm

- Monitor conditions, inform the public
- Community, infrastructure planning
- Emergency preparedness

Climate Change Response Has Co-Benefits

- Co-Benefits: actions that benefit the community regardless of future climate changes.
- Examples:
 - Increase energy efficiency/ save money
 - Promote walking, biking / improve fitness
 - Improve greenspaces / more desirable community
 - Build rain gardens / less mosquitoes
- Characteristics of Resilient Communities

For further information:

APHA Climate Change

www.apha.org/topics-and-issues/climate-change

CDC Climate and Health Program

www.cdc.gov/climateandhealth/

National Climate Assessment

http://nca2014.globalchange.gov/

https://health2016.globalchange.gov/

Contact Us: CameronL@michigan.gov

www.Michigan.gov\climateandhealth